The transportation of highly viscous oil surrounded by water annulus has been recognized as a feasible option in terms of low-energy consumption and high efficiency. During the process of heavy… Click to show full abstract
The transportation of highly viscous oil surrounded by water annulus has been recognized as a feasible option in terms of low-energy consumption and high efficiency. During the process of heavy oil delivery, the problem of pipe fittings is inevitably encountered, and the most common one is elbow assembly. In this present study, simulations for oil-water core annular flow (CAF) through a 90° elbow pipe were performed by computational fluid dynamics (CFD) based on VOF, standard k-ε, and CSF models. Simulation results were consistent with experimental data, which verifies the validity and practicability of the proposed model. The effects of inlet water fraction, superficial velocities of oil and water, oil properties (density and viscosity), and pipe geometry-related parameters (diameter ratio, wall roughness, and surface wettability) on the hydrodynamic performance and stability characteristics were explored. It is revealed that inlet water fraction, superficial velocities of oil and water, oil properties, and pipe geometric parameters do influence the volume fraction of oil and the stability of the water ring. Furthermore, the oil core may adhere to the downstream of the 90° elbow pipe under certain operational conditions. The results could provide a reference for the design of 90° elbow pipe structures and the optimization of operation parameters.
               
Click one of the above tabs to view related content.