LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient Utilization of Limonite Nickel Laterite to Prepare Ferronickel by the Selective Reduction Smelting Process

Photo from wikipedia

Ferronickel products obtained from the traditional process used to treat limonite nickel laterite usually assay very low-grade Ni, only 3–5% Ni due to the high Fe/Ni ratio of limonite nickel… Click to show full abstract

Ferronickel products obtained from the traditional process used to treat limonite nickel laterite usually assay very low-grade Ni, only 3–5% Ni due to the high Fe/Ni ratio of limonite nickel laterite. This paper describes an investigation conducted to upgrade limonite nickel laterites for the preparation of ferronickel by using selective reduction smelting technology. By means of thermodynamic calculations and smelting experiments, the smelting separation mechanism and the behavior of P and S removal in the smelting process, as well as the influence of smelting factors, have been systematically identified. The best production index of ferronickel is obtained under optimized conditions as follows: smelting the pre-reduced lumps at 1525 °C for 45 min with a basicity of 0.60, MgO/SiO2 ratio of 0.30, and nickel and iron metallization rate of 94.30% and 10.93%, respectively. The resulting ferronickel features a nickel and iron grade of 12.55% and 84.61% and a nickel and iron recovery of 85.65% and 10.87%, respectively. In addition, the content of S and P contained in ferronickel is only 0.11% and 0.0035%, respectively. The ferronickel obtained from the selective reduction smelting process is a fine material for the subsequent stainless steel smelting due to its high Ni grade and low content of impurities.

Keywords: smelting process; nickel laterite; limonite nickel; reduction smelting; selective reduction; process

Journal Title: Sustainability
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.