LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bioremediation of Heavy Metals from Industrial Effluents Using Bacillus pakistanensis and Lysinibacillus composti

Photo by bostonpubliclibrary from unsplash

Aquatic pollution is one of the main problems due to rapid development in industrialization. The remediation of industrial wastewater (IWW) by microorganisms is an environmentally friendly technique. This study was… Click to show full abstract

Aquatic pollution is one of the main problems due to rapid development in industrialization. The remediation of industrial wastewater (IWW) by microorganisms is an environmentally friendly technique. This study was conducted to assess pollution load in IWW and to use Bacillus pakistanensis and Lysinibacillus composti individually and in a consortium for bioremediation. The IWW was obtained from Hayatabad Industrial Estate and evaluated for physicochemical parameters and metal concentration. The pH, color, electrical conductivity (EC), turbidity, temperature, sulfide, fluoride, chloride, biological oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), total dissolved solids (TDS), calcium hardness, magnesium hardness, and total hardness were noted as 6.82, 440 TCU, 1.195 mS/cm, 54.65 mg/L, 26.8 °C, 5.60 mg/L, 3.6 mg/L, 162 mg/L, 85.5 mg/L, 921 mg/L, 232 mg/L, 794 mg/L, 590 mg/L, 395 mg/L, and 985 mg/L, respectively. The metals such as manganese, copper, chromium, cadmium, cobalt, silver, nickel, calcium, magnesium, and lead were also analyzed as 1.23 mg/L, 0.81 mg/L, 2.12 mg/L, 0.18 mg/L, 0.151 mg/L, 0.24 mg/L, 1.12 mg/L, 0.113 mg/L, 14.5 mg/L, and 0.19 mg/L, respectively. A pot experiment was performed for two weeks to evaluate the efficiency of the selected species. The IWW and tap water (control) were treated with selected species, individually and in a consortium. After treatment, a considerable reduction was noted in the color 87.3%, EC 46.5%, turbidity 84.1%, sulfide 87.5%, fluoride 25.0%, chloride 91.3%, BOD 96.4%, COD 86.5%, TSS 90%, TDS 45.0%, Ca hardness 42.3%, Mg hardness 77.2%, and total hardness 52.2%. After the experiment, samples of water were also analyzed for metal concentrations by atomic absorption spectrophotometry. The selected species removed 99.3% of Mn, 99.6% of Cu, 97.8% of Cr, 94.4% of Cd, 46.3% of Co, 85.1% of Ag, 88.4% of Ni, 98.8% of Ca, 91.5% of Mg, and 90.5% of Pb. The t-test analysis showed that the treatment with the selected species significantly decreased the metal concentrations in the IWW (p ≤ 0.05).

Keywords: bacillus pakistanensis; selected species; hardness; lysinibacillus composti; pakistanensis lysinibacillus

Journal Title: Sustainability
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.