LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Assessment of Carbon Reduction Benefits of A/O-Gradient Constructed Wetland Renovation for Rural Wastewater Treatment in the Southeast Coastal Areas of China Based on Life Cycle Assessment: The Example of Xiamen Sanxiushan Village

Photo from wikipedia

The enhancement of carbon sequestration and emissions reduction has emerged as a primary concern in China’s rural regions. Nevertheless, numerous completed rural wastewater treatment facilities necessitate retrofitting due to suboptimal… Click to show full abstract

The enhancement of carbon sequestration and emissions reduction has emerged as a primary concern in China’s rural regions. Nevertheless, numerous completed rural wastewater treatment facilities necessitate retrofitting due to suboptimal operational conditions. Consequently, evaluating the greenhouse gas (GHG) emissions impact and carbon reduction advantages of rural wastewater treatment facility retrofitting is essential. Existing research predominantly focuses on urban wastewater treatment plants, with minimal attention given to GHG emissions impact during the construction and demolition stages of wastewater treatment facilities. In this investigation, we developed a life cycle assessment (LCA)-based evaluation model to appraise the GHG emissions impact and carbon reduction benefits of retrofitting rural wastewater treatment facilities. We examined a renovation project in Sanxiushan Village, Xiamen City, Fujian Province, incorporating the integrated plant treatment technology of constructed wetlands. Our findings indicate that retrofitting offers significant advantages in terms of GHG emissions reduction, even when accounting for implicit GHG emissions. The establishment of supplementary terraced constructed wetlands and landscape greening can yield more substantial carbon reduction benefits. Moreover, we discovered that implicit GHG emissions during the construction stage can be mitigated by employing local, recycled, and low-carbon materials. Modifying vegetation community structure and prioritizing vegetation species selection can enhance the carbon storage capacity of plants, reducing overall life cycle GHG emissions and augmenting emissions reduction benefits. The evaluation model developed in this study can facilitate the promotion of low-carbon construction and operation of rural wastewater treatment facilities.

Keywords: rural wastewater; carbon; wastewater treatment; reduction; treatment

Journal Title: Sustainability
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.