LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Predictive Churn Modeling for Sustainable Business in the Telecommunication Industry: Optimized Weighted Ensemble Machine Learning

Photo by anniespratt from unsplash

Customers are prominent resources in every business for its sustainability. Therefore, predicting customer churn is significant for reducing churn, particularly in the high-churn-rate telecommunications business. To identify customers at risk… Click to show full abstract

Customers are prominent resources in every business for its sustainability. Therefore, predicting customer churn is significant for reducing churn, particularly in the high-churn-rate telecommunications business. To identify customers at risk of churning, tactical marketing actions can be strategized to raise the likelihood of the churn-probable customers remaining as customers. This might provide a corporation with significant savings. Hence, in this work, a churn prediction system is developed to assist telecommunication operators in detecting potential churn customers. In the proposed framework, the input data quality is improved through the processes of exploratory data analysis and data preprocessing for identifying data errors and comprehending data patterns. Then, feature engineering and data sampling processes are performed to transform the captured data into an appropriate form for classification and imbalanced data handling. An optimized ensemble learning model is proposed for classification in this framework. Unlike other ensemble models, the proposed classification model is an optimized weighted soft voting ensemble with a sequence of weights applied to weigh the prediction of each base learner with the hypothesis that specific base learners in the ensemble have more skill than others. In this optimization, Powell’s optimization algorithm is applied to optimize the ensemble weights of influence according to the base learners’ importance. The efficiency of the proposed optimally weighted ensemble learning model is evaluated in a real-world database. The empirical results show that the proposed customer churn prediction system achieves a promising performance with an accuracy score of 84% and an F1 score of 83.42%. Existing customer churn prediction systems are studied. We achieved a higher prediction accuracy than the other systems, including machine learning and deep learning models.

Keywords: weighted ensemble; business; machine learning; optimized weighted; churn; prediction

Journal Title: Sustainability
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.