This study investigated the air quality and ventilation systems of 22 public toilets in 10 railway stations in China. Approximately 80% of public toilets meet the standard for ammonia concentration… Click to show full abstract
This study investigated the air quality and ventilation systems of 22 public toilets in 10 railway stations in China. Approximately 80% of public toilets meet the standard for ammonia concentration in Class I toilets, while 20% exceed the standard. It was found that the concentration of pollutants is mainly related to the number of toilet users and the ventilation system. In 20% of public toilets, the change in ammonia concentration was delayed by about 1 to 2 h with the change in hourly service number. In order to improve the air quality, a design method for calculating the number of toilet cubicles was proposed. Results show that the service capacity of the cubicle per hour (SCCH) of a female toilet is 12, the SCCH of male toilets is related to the ratio of squatting pans to urinals (RSU), which is suggested to be 1:1~1:0.8, and the corresponding SCCH is 16~20. Then, the effect of different ventilation forms was simulated by computational fluid dynamics (CFD) 2019 software. The results show that the bottom exhaust was better than the top exhaust and that the fresh air supply system is unnecessary. The recommended ventilation rate for toilets is 20 air changes per hour (ACH). The scale design method of toilets proposed in this paper was meant to address the gender imbalance and avoid queuing and provides a reference for the renovation and design of public toilets.
               
Click one of the above tabs to view related content.