LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Frequency Regulation of Interlinked Microgrid System Using Mayfly Algorithm-Based PID Controller

Photo by jawfox_photography from unsplash

The primary goal of this article is to design and implement a secondary controller with which to control the system frequency in a networked microgrid system. The proposed power system… Click to show full abstract

The primary goal of this article is to design and implement a secondary controller with which to control the system frequency in a networked microgrid system. The proposed power system comprises of Renewable energy sources (RESs), energy-storing units (ESUs), and synchronous generator. RESs include photovoltaic (PV) and wind turbine generator (WTG) units. The ESU is composed of a flywheel and a battery. Because renewable energy sources are not constant in nature, their values fluctuate from time to time, causing an effect on system frequency and power flow variation in the tie line. The nonlinear output from the RESs is balanced with the support of ESUs. In order to address this situation, a proportional integral derivative (PID) controller based on the Mayfly algorithm (MA) is proposed and built. Comparing the responses of controllers based on the genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) technique-optimized to demonstrate the superiority of the MA-tuned controller.. The results of the validation comparisons reveal that the implemented MA-PID controller delivers and is capable of regulating system frequency under various load demand changes and renewable energy sources. A robustness analysis test was also performed in order to determine the effectiveness of the suggested optimization technique (1%, 2%, 5%, and 10%) step load perturbation (SLP) with ±25% and ±50% variation from the nominal governor and reheater time constant).

Keywords: system; pid controller; frequency; controller; microgrid system; mayfly algorithm

Journal Title: Sustainability
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.