LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Performance Optimization of Lignocellulosic Fiber-Reinforced Brake Friction Composite Materials Using an Integrated CRITIC-CODAS-Based Decision-Making Approach

Photo from wikipedia

A hybrid multicriteria decision-making (MCDM) framework, namely “criteria importance through inter-criteria correlation-combinative distance-based assessment” (CRITIC-CODAS) is introduced to rank automotive brake friction composite materials based on their physical and tribological… Click to show full abstract

A hybrid multicriteria decision-making (MCDM) framework, namely “criteria importance through inter-criteria correlation-combinative distance-based assessment” (CRITIC-CODAS) is introduced to rank automotive brake friction composite materials based on their physical and tribological properties. The ranking analysis was performed on ten brake friction composite material alternatives that contained varying proportions (5% and 10% by weight) of hemp, ramie, pineapple, banana, and Kevlar fibers. The properties of alternatives such as density, porosity, compressibility, friction coefficient, fade-recovery performance, friction fluctuation, cost, and carbon footprint were used as selection criteria. An increase in natural fiber content resulted in a decrease in density, along with an increase in porosity and compressibility. The composite with 5 wt.% Kevlar fiber showed the highest coefficient of friction, while the 5 wt.% ramie fiber-based composites exhibited the lowest levels of fade and friction fluctuations. The wear performance was highest in the composite containing 10 wt.% Kevlar fiber, while the composite with 10 wt.% ramie fiber exhibited the highest recovery. The results indicate that including different fibers in varying amounts can affect the evaluated performance criteria. A hybrid CRITIC-CODAS decision-making technique was used to select the optimal brake friction composite. The findings of this approach revealed that adding 10 wt.% banana fiber to the brake friction composite can give the optimal combination of evaluated properties. A sensitivity analysis was performed on several weight exchange scenarios to see the stability of the ranking results. Using Spearman’s correlation with the ranking outcomes from other MCDM techniques, the suggested decision-making framework was further verified, demonstrating its effectiveness and stability.

Keywords: brake friction; friction; fiber; decision making; friction composite

Journal Title: Sustainability
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.