LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Towards More Realistic Leaf Shapes in Functional-Structural Plant Models

Photo by frauhanne from unsplash

Fluctuating asymmetry in plant leaves is a widely used measure in geometric morphometrics for assessing random deviations from perfect symmetry. In this study, we considered the concept of fluctuating asymmetry… Click to show full abstract

Fluctuating asymmetry in plant leaves is a widely used measure in geometric morphometrics for assessing random deviations from perfect symmetry. In this study, we considered the concept of fluctuating asymmetry to improve the prototype leaf shape of the functional-structural plant model L-Cucumber. The overall objective was to provide a realistic geometric representation of the leaves for the light sensitive plant reactions in the virtual plant model. Based on three-dimensional data from several hundred in situ digitized cucumber leaves comparisons of model leaves and measurements were conducted. Robust Bayesian comparison of groups was used to assess statistical differences between leaf halves while respecting fluctuating asymmetries. Results indicated almost no directional asymmetry in leaves comparing different distances from the prototype while detecting systematic deviations shared by both halves. This information was successfully included in an improved leaf prototype and implemented in the virtual plant model L-Cucumber. Comparative virtual plant simulations revealed a slight improvement in plant internode development against experimental data using the novel leaf shape. Further studies can now focus on analyses of stress on the 3D-deformation of the leaf and the development of a dynamic leaf shape model.

Keywords: functional structural; plant; leaf shape; structural plant; model; leaf

Journal Title: Symmetry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.