LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Visual Simulation of Detailed Turbulent Water by Preserving the Thin Sheets of Fluid

Photo from wikipedia

When we perform particle-based water simulation, water particles are often increased dramatically because of particle splitting around breaking holes to maintain the thin fluid sheets. Because most of the existing… Click to show full abstract

When we perform particle-based water simulation, water particles are often increased dramatically because of particle splitting around breaking holes to maintain the thin fluid sheets. Because most of the existing approaches do not consider the volume of the water particles, the water particles must have a very low mass to satisfy the law of the conservation of mass. This phenomenon smears the motion of the water, which would otherwise result in splashing, thereby resulting in artifacts such as numerical dissipation. Thus, we propose a new fluid-implicit, particle-based framework for maintaining and representing the thin sheets and turbulent flows of water. After splitting the water particles, the proposed method uses the ghost density and ghost mass to redistribute the difference in mass based on the volume of the water particles. Next, small-scale turbulent flows are formed in local regions and transferred in a smooth manner to the global flow field. Our results show us the turbulence details as well as the thin sheets of water, thereby obtaining an aesthetically pleasing improvement compared with existing methods.

Keywords: visual simulation; water; water particles; mass; thin sheets

Journal Title: Symmetry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.