This paper focuses on multi-attribute group decision-making (MAGDM) course in which attributes are evaluated in terms of interval-valued intuitionistic fuzzy (IVIF) information. More explicitly, this paper introduces new aggregation operators… Click to show full abstract
This paper focuses on multi-attribute group decision-making (MAGDM) course in which attributes are evaluated in terms of interval-valued intuitionistic fuzzy (IVIF) information. More explicitly, this paper introduces new aggregation operators for IVIF information and further proposes a new IVIF MAGDM method. The power average (PA) operator and the Muirhead mean (MM) are two powerful and effective information aggregation technologies. The most attractive advantage of the PA operator is its power to combat the adverse effects of ultra-evaluation values on the information aggregation results. The prominent characteristic of the MM operator is that it is flexible to capture the interrelationship among any numbers of arguments, making it more powerful than Bonferroni mean (BM), Heronian mean (HM), and Maclaurin symmetric mean (MSM). To absorb the virtues of both PA and MM, it is necessary to combine them to aggregate IVIF information and propose IVIF power Muirhead mean (IVIFPMM) operator and the IVIF weighted power Muirhead mean (IVIFWPMM) operator. We investigate their properties to show the strongness and flexibility. Furthermore, a novel approach to MAGDM problems with IVIF decision-making information is introduced. Finally, a numerical example is provided to show the performance of the proposed method.
               
Click one of the above tabs to view related content.