The symmetric differential operator is a generalization operating of the well-known ordinary derivative. These operators have advantages in boundary value problems, statistical studies and spectral theory. In this effort, we… Click to show full abstract
The symmetric differential operator is a generalization operating of the well-known ordinary derivative. These operators have advantages in boundary value problems, statistical studies and spectral theory. In this effort, we introduce a new symmetric differential operator (SDO) and its integral in the open unit disk. This operator is a generalization of the Sàlàgean differential operator. Our study is based on geometric function theory and its applications in the open unit disk. We formulate new classes of analytic functions using SDO depending on the symmetry properties. Moreover, we define a linear combination operator containing SDO and the Ruscheweyh derivative. We illustrate some inclusion properties and other inequalities involving SDO and its integral.
               
Click one of the above tabs to view related content.