LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

PointNet++ and Three Layers of Features Fusion for Occlusion Three-Dimensional Ear Recognition Based on One Sample per Person

Photo by norahutton from unsplash

The ear’s relatively stable structure makes it suitable for recognition. In common identification applications, only one sample per person (OSPP) is registered in a gallery; consequently, effectively training deep-learning-based ear… Click to show full abstract

The ear’s relatively stable structure makes it suitable for recognition. In common identification applications, only one sample per person (OSPP) is registered in a gallery; consequently, effectively training deep-learning-based ear recognition approach is difficult. The state-of-the-art (SOA) 3D ear recognition using the OSPP approach bottlenecks when large occluding objects are close to the ear. Hence, we propose a system that combines PointNet++ and three layers of features that are capable of extracting rich identification information from a 3D ear. Our goal is to correctly recognize a 3D ear affected by a large nearby occlusion using one sample per person (OSPP) registered in a gallery. The system comprises four primary components: (1) segmentation; (2) local and local joint structural (LJS) feature extraction; (3) holistic feature extraction; and (4) fusion. We use PointNet++ for ear segmentation. For local and LJS feature extraction, we propose an LJS feature descriptor–pairwise surface patch cropped using a symmetrical hemisphere cut-structured histogram with an indexed shape (PSPHIS) descriptor. Furthermore, we propose a local and LJS matching engine based on the proposed LJS feature descriptor and SOA surface patch histogram indexed shape (SPHIS) local feature descriptor. For holistic feature extraction, we use a voxelization method for global matching. For the fusion component, we use a weighted fusion method to recognize the 3D ear. The experimental results demonstrate that the proposed system outperforms the SOA normalization-free 3D ear recognition methods using OSPP when the ear surface is influenced by a large nearby occlusion.

Keywords: feature; recognition; ear recognition; fusion; one sample; sample per

Journal Title: Symmetry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.