LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mixed Type Nondifferentiable Higher-Order Symmetric Duality over Cones

Photo from wikipedia

A new mixed type nondifferentiable higher-order symmetric dual programs over cones is formulated. As of now, in the literature, either Wolfe-type or Mond–Weir-type nondifferentiable symmetric duals have been studied. However,… Click to show full abstract

A new mixed type nondifferentiable higher-order symmetric dual programs over cones is formulated. As of now, in the literature, either Wolfe-type or Mond–Weir-type nondifferentiable symmetric duals have been studied. However, we present a unified dual model and discuss weak, strong, and converse duality theorems for such programs under higher-order F - convexity/higher-order F - pseudoconvexity. Self-duality is also discussed. Our dual programs and results generalize some dual formulations and results appeared in the literature. Two non-trivial examples are given to show the uniqueness of higher-order F - convex/higher-order F - pseudoconvex functions and existence of higher-order symmetric dual programs.

Keywords: duality; type nondifferentiable; order; order symmetric; higher order

Journal Title: Symmetry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.