LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multi-Parameter Optimization of an InP Electro-Optic Modulator

Photo by harpreetkaka from unsplash

In this article, a method for indium phosphide (InP) electro-optic modulator (EOM) optimization is introduced. The method can be used for the design and analysis of an EOM based on… Click to show full abstract

In this article, a method for indium phosphide (InP) electro-optic modulator (EOM) optimization is introduced. The method can be used for the design and analysis of an EOM based on the Mach-Zehnder interferometer (MZI) design. This design is based on the division of the input optical signal into two optical paths and then, after processing, it combines the light into a single waveguide. The symmetry of the structure can provide state-of-the-art EOM characteristics with a push-pull control signal. Using a traveling wave electrode (TWE) design as a starting point, the authors varied the heterostructure design and optical waveguide parameters to obtain the optimal values of initial optical loss, evenness of the initial optical loss in the operating wavelength range, and the extinction ratio and length of the modulator arm. The key features of the proposed optimization method include the following: all independent input parameters are linked into a single system, where the relationship between the electrical and optical parameters of the modulator is realized; all physically realizable combinations of the input parameters are available for analysis; and EOM optimization is possible for one target parameter or for a group of target parameters. The results of the EOM optimization using the described method are presented.

Keywords: optic modulator; inp electro; electro optic; optimization; modulator; design

Journal Title: Symmetry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.