A new method of line shape calculations of hydrogen-like atoms in magnetized plasmas is presented. This algorithm makes it possible to solve two fundamental problems in the broadening theory: the… Click to show full abstract
A new method of line shape calculations of hydrogen-like atoms in magnetized plasmas is presented. This algorithm makes it possible to solve two fundamental problems in the broadening theory: the analytical description of the radiation transition array between excited atomic states and an account of a thermal ion motion effect on the line shapes formation. The solution to the first problem is based on the semiclassical approach to dipole matrix elements calculations and the usage of the specific symmetry properties of the Coulomb field. The second one is considered in terms of the kinetic treatment of the frequency fluctuation model (FFM). As the result, one has a universal description of line shapes under the action of the dynamic of ion’s microfield. The final line shape is obtained by the convolution of the ionic line shape with the Voigt electron Doppler profile. The method is applicable formally for large values of principal quantum numbers. However, the efficiency of the results is demonstrated even for well known first members of the hydrogen Balmer series Dα and Dβ lines. The comparison of obtained results with accurate quantum calculations is presented. The new method may be of interest for investigations of spectral line shapes of hydrogen-like ions presented in different kinds of hot ionized environments with the presence of a magnetic field, including So L and divertor tokamak plasmas.
               
Click one of the above tabs to view related content.