LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the Difference of Inverse Coefficients of Univalent Functions

Photo by vlisidis from unsplash

Let f be analytic in the unit disk D={z∈C:|z| Click to show full abstract

Let f be analytic in the unit disk D={z∈C:|z|<1}, and S be the subclass of normalized univalent functions with f(0)=0, and f′(0)=1. Let F be the inverse function of f, given by F(z)=ω+∑n=2∞Anωn for some |ω|≤r0(f). Let S*⊂S be the subset of starlike functions in D, and C the subset of convex functions in D. We show that −1≤|A3|−|A2|≤3 for f∈S, the upper bound being sharp, and sharp upper and lower bounds for |A3|−|A2| for the more important subclasses of S* and C, and for some related classes of Bazilevic functions.

Keywords: inverse coefficients; univalent functions; coefficients univalent; difference inverse

Journal Title: Symmetry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.