LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Free Convection Heat Transfer and Entropy Generation in an Odd-Shaped Cavity Filled with a Cu-Al2O3 Hybrid Nanofluid

Photo by alvarordesign from unsplash

The present paper aims to analyze the thermal convective heat transport and generated irreversibility of water-Cu-Al2O3 hybrid nanosuspension in an odd-shaped cavity. The side walls are adiabatic, and the internal… Click to show full abstract

The present paper aims to analyze the thermal convective heat transport and generated irreversibility of water-Cu-Al2O3 hybrid nanosuspension in an odd-shaped cavity. The side walls are adiabatic, and the internal and external borders of the enclosure are isothermally kept at high and low temperatures of Thand Tc, respectively. The control equations based on conservation laws are formulated in dimensionless form and worked out employing the Galerkin finite element technique. The outcomes are demonstrated using streamlines, isothermal lines, heatlines, isolines of Bejan number, as well as the rate of generated entropy and the Nusselt number. Impacts of the Rayleigh number, the hybrid nanoparticles concentration (ϕhnf), the volume fraction of the Cu nanoparticles to ϕhnf ratio (ϕr), width ratio (WR) have been surveyed and discussed. The results show that, for all magnitudes of Rayleigh numbers, increasing nanoparticles concentration intensifies the rate of entropy generation. Moreover, for high Rayleigh numbers, increasing WR enhances the rate of heat transport.

Keywords: odd shaped; entropy generation; shaped cavity; heat; al2o3 hybrid

Journal Title: Symmetry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.