LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On Families of Wigner Functions for N-Level Quantum Systems

Photo by vlisidis from unsplash

A method for constructing all admissible unitary non-equivalent Wigner quasiprobability distributions providing the Stratonovic-h-Weyl correspondence for an arbitrary N-level quantum system is proposed. The method is based on the reformulation… Click to show full abstract

A method for constructing all admissible unitary non-equivalent Wigner quasiprobability distributions providing the Stratonovic-h-Weyl correspondence for an arbitrary N-level quantum system is proposed. The method is based on the reformulation of the Stratonovich–Weyl correspondence in the form of algebraic “master equations” for the spectrum of the Stratonovich–Weyl kernel. The later implements a map between the operators in the Hilbert space and the functions in the phase space identified by the complex flag manifold. The non-uniqueness of the solutions to the master equations leads to diversity among the Wigner quasiprobability distributions. It is shown that among all possible Stratonovich–Weyl kernels for a N=(2j+1)-level system, one can always identify the representative that realizes the so-called SU(2)-symmetric spin-j symbol correspondence. The method is exemplified by considering the Wigner functions of a single qubit and a single qutrit.

Keywords: level quantum; families wigner; quantum systems; functions level; stratonovich weyl; wigner functions

Journal Title: Symmetry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.