This paper is devoted to studying approximations of symmetric continuous functions by symmetric analytic functions on a Banach space X with a symmetric basis. We obtain some positive results for… Click to show full abstract
This paper is devoted to studying approximations of symmetric continuous functions by symmetric analytic functions on a Banach space X with a symmetric basis. We obtain some positive results for the case when X admits a separating polynomial using a symmetrization operator. However, even in this case, there is a counter-example because the symmetrization operator is well defined only on a narrow, proper subspace of the space of analytic functions on X. For X=c0, we introduce ε-slice G-analytic functions that have a behavior similar to G-analytic functions at points x∈c0 such that all coordinates of x are greater than ε, and we prove a theorem on approximations of uniformly continuous functions on c0 by ε-slice G-analytic functions.
               
Click one of the above tabs to view related content.