LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Overexpression of Bcl2 and Bcl2L1 Can Suppress Betanodavirus-Induced Type III Cell Death and Autophagy Induction in GF-1 Cells

Photo from wikipedia

Betanodavirus infection induces viral nervous necrosis (VNN) in fish. However, the role of cell death and autophagy in the pathogenesis of VNN remains unknown. This study aimed to investigate the… Click to show full abstract

Betanodavirus infection induces viral nervous necrosis (VNN) in fish. However, the role of cell death and autophagy in the pathogenesis of VNN remains unknown. This study aimed to investigate the effect of red-spotted grouper nervous necrosis virus (RGNNV) infection on Bcl2 downregulation and overexpression on asymmetric interaction between cell death and autophagy. The mRFP-LC3 reporter system was used to identify autophagosome formation in GF-1 (Grouper fin-1) fish cells. We found that the RGNNV could strongly induce autophagosome formation 36 h post-infection (hpi) after autophagy inhibitor 3-MA had downregulated anti-apoptotic genes such as Bcl2 and Bcl2L1 (Bcl-xL). We proposed that the overexpression of Bcl2 and Bcl2L1 can modulate both cell death and autophagy. Then, we found that it can also reduce either type III cell death or autophagy, which are mildly correlated with reduced viral replication. Our data suggest that RGNNV-induced Bcl2 downregulation correlates with the asymmetrical interaction between cell death induction and the autophagy process, which resembles viral replication.

Keywords: cell death; death autophagy; bcl2 bcl2l1; autophagy

Journal Title: Symmetry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.