LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inference for Kumaraswamy Distribution under Generalized Progressive Hybrid Censoring

Photo by solamander from unsplash

In this paper, generalized progressive hybrid censoring is discussed, while a scheme is designed to provide a flexible and symmetrical scenario to collect failure information in the whole life cycle… Click to show full abstract

In this paper, generalized progressive hybrid censoring is discussed, while a scheme is designed to provide a flexible and symmetrical scenario to collect failure information in the whole life cycle of units. When the lifetime of units follows Kumaraswamy distribution, inference is investigated under classical and Bayesian approaches. The maximum likelihood estimates and associated existence and uniqueness properties are established and the confidence intervals for unknown parameters are provided by using a large sample size based on asymptotic theory. Moreover, the Bayes estimates along with highest probability density credible intervals are also developed through the Monte-Carlo Markov Chain sampling technique to approximate the associated posteriors. Simulation studies and a real-life example are presented for illustration purposes.

Keywords: kumaraswamy distribution; progressive hybrid; generalized progressive; hybrid censoring; inference

Journal Title: Symmetry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.