LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Symmetries in Dynamic Models of Biological Systems: Mathematical Foundations and Implications

Photo from wikipedia

Symmetries are ubiquitous in nature. Almost all organisms have some kind of “symmetry”, meaning that their shape does not change under some geometric transformation. This geometrical concept of symmetry is… Click to show full abstract

Symmetries are ubiquitous in nature. Almost all organisms have some kind of “symmetry”, meaning that their shape does not change under some geometric transformation. This geometrical concept of symmetry is intuitive and easy to recognize. On the other hand, the behavior of many biological systems over time can be described with ordinary differential equations. These dynamic models may also possess “symmetries”, meaning that the time courses of some variables remain invariant under certain transformations. Unlike the previously mentioned symmetries, the ones present in dynamic models are not geometric, but infinitesimal transformations. These mathematical symmetries can be related to certain features of the system’s dynamic behavior, such as robustness or adaptation capabilities. However, they can also arise from questionable modeling choices, which may lead to non-identifiability and non-observability. This paper provides an overview of the types of symmetries that appear in dynamic models, the mathematical tools available for their analyses, the ways in which they are related to system properties, and the implications for biological modeling.

Keywords: symmetries dynamic; dynamic models; systems mathematical; biological systems; models biological; mathematical foundations

Journal Title: Symmetry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.