LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lie Symmetries, Closed-Form Solutions, and Various Dynamical Profiles of Solitons for the Variable Coefficient (2+1)-Dimensional KP Equations

Photo from wikipedia

This investigation focuses on two novel Kadomtsev–Petviashvili (KP) equations with time-dependent variable coefficients that describe the nonlinear wave propagation of small-amplitude surface waves in narrow channels or large straits with… Click to show full abstract

This investigation focuses on two novel Kadomtsev–Petviashvili (KP) equations with time-dependent variable coefficients that describe the nonlinear wave propagation of small-amplitude surface waves in narrow channels or large straits with slowly varying width and depth and non-vanishing vorticity. These two variable coefficients, Kadomtsev–Petviashvili (VCKP) equations in (2+1)-dimensions, are the main extensions of the KP equation. Applying the Lie symmetry technique, we carry out infinitesimal generators, potential vector fields, and various similarity reductions of the considered VCKP equations. These VCKP equations are converted into nonlinear ODEs via two similarity reductions. The closed-form analytic solutions are achieved, including in the shape of distinct complex wave structures of solitons, dark and bright soliton shapes, double W-shaped soliton shapes, multi-peakon shapes, curved-shaped multi-wave solitons, and novel solitary wave solitons. All the obtained solutions are verified and validated by using back substitution to the original equation through Wolfram Mathematica. We analyze the dynamical behaviors of these obtained solutions with some three-dimensional graphics via numerical simulation. The obtained variable coefficient solutions are more relevant and useful for understanding the dynamical structures of nonlinear KP equations and shallow water wave models.

Keywords: closed form; variable coefficient; lie symmetries; vckp equations; symmetries closed; form solutions

Journal Title: Symmetry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.