LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Enhanced Key Schedule Algorithm of PRESENT-128 Block Cipher for Random and Non-Random Secret Keys

Photo by efekurnaz from unsplash

The key schedule algorithm (KSA) is a crucial element of symmetric block ciphers with a direct security impact. Despite its undeniable significance, the KSA is still a less focused area… Click to show full abstract

The key schedule algorithm (KSA) is a crucial element of symmetric block ciphers with a direct security impact. Despite its undeniable significance, the KSA is still a less focused area in the design of an encryption algorithm. PRESENT is a symmetric lightweight block cipher that provides the optimal balance between security, performance, and minimal cost in IoT. However, the linear functions in KSA lead to a slow and predictable bit transition, indicating the relationship between round keys. A robust KSA should produce random and independent round keys irrespective of the secret key. Therefore, this research aims to improve the KSA PRESENT-128 block cipher with enhanced randomness, round key bit difference, and the avalanche effect. The experiments on round keys and ciphertext with random, low density and high-density secret key datasets endorse the expected improvements. Moreover, the results show that the improved KSA produces random round keys that successfully pass the NIST randomness test. The bit transition from one round key to another is increased from 20% to 40%, where a greater inclination of the avalanche effect has an increased effect with 50% bit change. On the other hand, the improved KSA PRESENT requires an additional 0.001871 s to generate round keys, as a security cost trade-off.

Keywords: round keys; block cipher; random; round; block

Journal Title: Symmetry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.