LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Some Identities Involving Degenerate q-Hermite Polynomials Arising from Differential Equations and Distribution of Their Zeros

Photo from wikipedia

This paper intends to define degenerate q-Hermite polynomials, namely degenerate q-Hermite polynomials by means of generating function. Some significant properties of degenerate q-Hermite polynomials such as recurrence relations, explicit identities… Click to show full abstract

This paper intends to define degenerate q-Hermite polynomials, namely degenerate q-Hermite polynomials by means of generating function. Some significant properties of degenerate q-Hermite polynomials such as recurrence relations, explicit identities and differential equations are established. Many mathematicians have been studying the differential equations arising from the generating functions of special numbers and polynomials. Based on the results so far, we find the differential equations for the degenerate q-Hermite polynomials. We also provide some identities for the degenerate q-Hermite polynomials using the coefficients of this differential equation. Finally, we use a computer to view the location of the zeros in degenerate q-Hermite equations. Numerical experiments have confirmed that the roots of the degenerate q-Hermit equations are not symmetric with respect to the imaginary axis.

Keywords: differential equations; zeros; degenerate hermite; hermite polynomials

Journal Title: Symmetry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.