LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Efficient Asymmetric Nonlinear Activation Function for Deep Neural Networks

Photo by lucabravo from unsplash

As a key step to endow the neural network with nonlinear factors, the activation function is crucial to the performance of the network. This paper proposes an Efficient Asymmetric Nonlinear… Click to show full abstract

As a key step to endow the neural network with nonlinear factors, the activation function is crucial to the performance of the network. This paper proposes an Efficient Asymmetric Nonlinear Activation Function (EANAF) for deep neural networks. Compared with existing activation functions, the proposed EANAF requires less computational effort, and it is self-regularized, asymmetric and non-monotonic. These desired characteristics facilitate the outstanding performance of the proposed EANAF. To demonstrate the effectiveness of this function in the field of object detection, the proposed activation function is compared with several state-of-the-art activation functions on the typical backbone networks such as ResNet and DSPDarkNet. The experimental results demonstrate the superior performance of the proposed EANAF.

Keywords: activation function; function; asymmetric nonlinear; nonlinear activation; efficient asymmetric; activation

Journal Title: Symmetry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.