LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Heat Flow Characteristics of Ferrofluid in Magnetic Field Patterns for Electric Vehicle Power Electronics Cooling

Photo from wikipedia

The ferrofluid is a kind of nanofluid that has magnetization properties in addition to excellent thermophysical properties, which has resulted in an effective performance trend in cooling applications. In the… Click to show full abstract

The ferrofluid is a kind of nanofluid that has magnetization properties in addition to excellent thermophysical properties, which has resulted in an effective performance trend in cooling applications. In the present study, experiments are conducted to investigate the heat flow characteristics of ferrofluid based on thermomagnetic convection under the influence of different magnetic field patterns. The temperature and heat dissipation characteristics are compared for ferrofluid under the influence of no-magnet, I, L, and T magnetic field patterns. The results reveal that the heat gets accumulated within ferrofluid near the heating part in the case of no magnet, whereas the heat flows through ferrofluid under the influence of different magnetic field patterns without any external force. Owing to the thermomagnetic convection characteristic of ferrofluid, the heat dissipates from the heating block and reaches the cooling block by following the path of the I magnetic field pattern. However, in the case of the L and T magnetic field patterns, the thermomagnetic convection characteristic of ferrofluid drives the heat from the heating block to the endpoint location of the pattern instead of the cooling block. The asymmetrical heat dissipation in the case of the L magnetic field pattern and the symmetrical heat dissipation in the case of the T magnetic field pattern are observed following the magnetization path of ferrofluid in the respective cases. The results confirm that the direction of heat flow could be controlled based on the type of magnetic field pattern and its path by utilizing the thermomagnetic behavior of ferrofluid. The proposed lab-scale experimental set-up and results database could be utilized to design an automatic energy transport system for the cooling of power conversion devices in electric vehicles.

Keywords: ferrofluid; heat flow; heat; magnetic field; field patterns

Journal Title: Symmetry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.