LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Research on Prediction Method of Gear Pump Remaining Useful Life Based on DCAE and Bi-LSTM

Photo from wikipedia

As a hydraulic pump is the power source of a hydraulic system, predicting its remaining useful life (RUL) can effectively improve the operating efficiency of the hydraulic system and reduce… Click to show full abstract

As a hydraulic pump is the power source of a hydraulic system, predicting its remaining useful life (RUL) can effectively improve the operating efficiency of the hydraulic system and reduce the incidence of failure. This paper presents a scheme for predicting the RUL of a hydraulic pump (gear pump) through a combination of a deep convolutional autoencoder (DCAE) and a bidirectional long short-term memory (Bi-LSTM) network. The vibration data were characterized by the DCAE, and a health indicator (HI) was constructed and modeled to determine the degradation state of the gear pump. The DCAE is a typical symmetric neural network, which can effectively extract characteristics from the data by using the symmetry of the encoding network and decoding network. After processing the original vibration data segment, health indicators were entered as a label into the RUL prediction model based on the Bi-LSTM network, and model training was carried out to achieve the RUL prediction of the gear pump. To verify the validity of the methodology, a gear pump accelerated life experiment was carried out, and whole life cycle data were obtained for method validation. The results show that the constructed HI can effectively characterize the degenerative state of the gear pump, and the proposed RUL prediction method can effectively predict the degeneration trend of the gear pump.

Keywords: network; gear pump; remaining useful; life; prediction; pump

Journal Title: Symmetry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.