LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Ensemble Framework to Forest Optimization Based Reduct Searching

Photo by yannym from unsplash

Essentially, the solution to an attribute reduction problem can be viewed as a reduct searching process. Currently, among various searching strategies, meta-heuristic searching has received extensive attention. As a new… Click to show full abstract

Essentially, the solution to an attribute reduction problem can be viewed as a reduct searching process. Currently, among various searching strategies, meta-heuristic searching has received extensive attention. As a new emerging meta-heuristic approach, the forest optimization algorithm (FOA) is introduced to the problem solving of attribute reduction in this study. To further improve the classification performance of selected attributes in reduct, an ensemble framework is also developed: firstly, multiple reducts are obtained by FOA and data perturbation, and the structure of those multiple reducts is symmetrical, which indicates that no order exists among those reducts; secondly, multiple reducts are used to execute voting classification over testing samples. Finally, comprehensive experiments on over 20 UCI datasets clearly validated the effectiveness of our framework: it is not only beneficial to output reducts with superior classification accuracies and classification stabilities but also suitable for data pre-processing with noise. This improvement work we have performed makes the FOA obtain better benefits in the data processing of life, health, medical and other fields.

Keywords: ensemble framework; reduct searching; reduct; framework; forest optimization

Journal Title: Symmetry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.