LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Logarithm Sobolev and Shannon's Inequalities Associated with the Deformed Fourier Transform and Applications

Photo by stayandroam from unsplash

By using the symmetry of the Dunkl Laplacian operator, we prove a sharp Shannon-type inequality and a logarithmic Sobolev inequality for the Dunkl transform. Combining these inequalities, we obtain a… Click to show full abstract

By using the symmetry of the Dunkl Laplacian operator, we prove a sharp Shannon-type inequality and a logarithmic Sobolev inequality for the Dunkl transform. Combining these inequalities, we obtain a new, short proof for Heisenberg-type uncertainty principles in the Dunkl setting. Moreover, by combining Nash’s inequality, Carlson’s inequality and Sobolev’s embedding theorems for the Dunkl transform, we prove new uncertainty inequalities involving the L∞-norm. Finally, we obtain a logarithmic Sobolev inequality in Lp-spaces, from which we derive an Lp-Heisenberg-type uncertainty inequality and an Lp-Nash-type inequality for the Dunkl transform.

Keywords: type; shannon; transform; logarithm sobolev; dunkl transform; inequality

Journal Title: Symmetry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.