LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Long-Short Term Memory Technique for Monthly Rainfall Prediction in Thale Sap Songkhla River Basin, Thailand

Photo by zyteng from unsplash

Rainfall is a primary factor for agricultural production, especially in a rainfed agricultural region. Its accurate prediction is therefore vital for planning and managing farmers’ plantations. Rainfall plays an important… Click to show full abstract

Rainfall is a primary factor for agricultural production, especially in a rainfed agricultural region. Its accurate prediction is therefore vital for planning and managing farmers’ plantations. Rainfall plays an important role in the symmetry of the water cycle, and many hydrological models use rainfall as one of their components. This paper aimed to investigate the applicability of six machine learning (ML) techniques (i.e., M5 model tree: (M5), random forest: (RF), support vector regression with polynomial (SVR-poly) and RBF kernels (SVR- RBF), multilayer perceptron (MLP), and long-short-term memory (LSTM) in predicting for multiple-month ahead of monthly rainfall. The experiment was set up for two weather gauged stations located in the Thale Sap Songkhla basin. The model development was carried out by (1) selecting input variables, (2) tuning hyperparameters, (3) investigating the influence of climate variables on monthly rainfall prediction, and (4) predicting monthly rainfall with multi-step-ahead prediction. Four statistical indicators including correlation coefficient (r), mean absolute error (MAE), root mean square error (RMSE), and overall index (OI) were used to assess the model’s effectiveness. The results revealed that large-scale climate variables, particularly sea surface temperature, were significant influence variables for rainfall prediction in the tropical climate region. For projections of the Thale Sap Songkhla basin as a whole, the LSTM model provided the highest performance for both gauged stations. The developed predictive rainfall model for two rain gauged stations provided an acceptable performance: r (0.74), MAE (86.31 mm), RMSE (129.11 mm), and OI (0.70) for 1 month ahead, r (0.72), MAE (91.39 mm), RMSE (133.66 mm), and OI (0.68) for 2 months ahead, and r (0.70), MAE (94.17 mm), RMSE (137.22 mm), and OI (0.66) for 3 months ahead.

Keywords: sap songkhla; thale sap; rainfall prediction; prediction; monthly rainfall

Journal Title: Symmetry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.