LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Extremal Structure on Revised Edge-Szeged Index with Respect to Tricyclic Graphs

Photo by puskas_dominik from unsplash

For a given graph G, Sze*(G)=∑e=uv∈E(G)mu(e)+m0(e)2mv(e)+m0(e)2 is the revised edge-Szeged index of G, where mu(e) and mv(e) are the number of edges of G lying closer to vertex u than… Click to show full abstract

For a given graph G, Sze*(G)=∑e=uv∈E(G)mu(e)+m0(e)2mv(e)+m0(e)2 is the revised edge-Szeged index of G, where mu(e) and mv(e) are the number of edges of G lying closer to vertex u than to vertex v and the number of edges of G lying closer to vertex v than to vertex u, respectively, and m0(e) is the number of edges equidistant to u and v. In this paper, we identify the lower bound of the revised edge-Szeged index among all tricyclic graphs and also characterize the extremal structure of graphs that attain the bound.

Keywords: tricyclic graphs; edge szeged; revised edge; extremal structure; szeged index

Journal Title: Symmetry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.