The thermal radiation properties of the accretion disk around a non-rotating black hole with a perfect fluid dark matter (PFDM) environment are investigated. A non-rotating black hole surrounded by perfect… Click to show full abstract
The thermal radiation properties of the accretion disk around a non-rotating black hole with a perfect fluid dark matter (PFDM) environment are investigated. A non-rotating black hole surrounded by perfect fluid dark matter together with a classical geometrically thin but optically thick Novikov–Thorne disk is selected as a system to be analyzed. It is observed that the perfect fluid dark matter strengthens the gravitational field, which leads to both the increase of the radii of the event horizon and the innermost stable circular orbit (ISCO). However, for the flux of the radiant energy over the accretion disk, the maximum flux is reduced and shifted outwards the central object under the influence of the perfect fluid dark matter. The dependence of the thermal profile of the disk on the radial coordinate and the intensity of perfect fluid dark matter shows analogous behavior. It has been demonstrated that the radiative efficiency of the accretion disk is increased from ∼6% up to ∼20% with the increase in the intensity of the surrounding perfect fluid dark matter. The thermal spectra of the accretion disk has also been explored, which is shifted towards the lower frequencies (corresponding to the gravitational redshift of the electromagnetic radiation coming from the disk) with the increase in the intensity of the perfect fluid dark matter.
               
Click one of the above tabs to view related content.