Automatic parking path optimization is a key point for automatic parking. However, it is difficult to obtain the smooth, accurate and optimal parking path by using traditional automatic parking optimization… Click to show full abstract
Automatic parking path optimization is a key point for automatic parking. However, it is difficult to obtain the smooth, accurate and optimal parking path by using traditional automatic parking optimization algorithms. So, based on the automatic parking path optimization model for cubic spline interpolation, an improved automatic parking path optimization based on the immune moth flame algorithm is proposed for intelligent vehicles. Firstly, to enhance the global optimization performance, an automatic parking path optimization model for cubic spline interpolation is designed by using shortest parking path as optimization target. Secondly, an improved immune moth flame algorithm (IIMFO) based on the immune mechanism, Gaussian mutation mechanism and opposition-based learning strategy is proposed, and an adaptive decreasing inertia weight coefficient is integrated into the moth flame algorithm so that these strategies can improve the balance quality between global search and local development effectively. Finally, the optimization results on the several common test functions show that the IIMFO algorithm proposed in this paper has higher optimization precision. Furthermore, the simulation and semi-automatic experiment results of automatic parking path optimization practical cases show that the improved automatic parking path optimization based on the immune moth flame algorithm for intelligent vehicles has a better optimization effect than that of the traditional automatic parking optimization algorithms.
               
Click one of the above tabs to view related content.