LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Generalization of Two-Sided Length Biased Inverse Gaussian Distributions and Applications

Photo by charlesdeluvio from unsplash

The notion of length-biased distribution can be used to develop adequate models. Length-biased distribution was known as a special case of weighted distribution. In this work, a new class of… Click to show full abstract

The notion of length-biased distribution can be used to develop adequate models. Length-biased distribution was known as a special case of weighted distribution. In this work, a new class of length-biased distribution, namely the two-sided length-biased inverse Gaussian distribution (TS-LBIG), was introduced. The physical phenomenon of this scenario was described in a case of cracks developing from two sides. Since the probability density function of the original TS-LBIG distribution cannot be written in a closed-form expression, its generalization form was further introduced. Important properties such as the moment-generating function and survival function cannot be provided. We offered a different approach to solving this problem. Some distributional properties were investigated. The parameters were estimated by the method of the moment. Monte Carlo simulation studies were carried out to appraise the performance of the suggested estimators using bias, variance, and mean square error. An application of a real dataset was presented for illustration. The results showed that the suggested estimators performed better than the original study. The proposed distribution provided a more appropriate model than other candidate distributions for fitting based on Akaike information criterion.

Keywords: length biased; biased inverse; distribution; sided length; two sided

Journal Title: Symmetry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.