The main purpose of the study was to apply symmetry principles to general mathematical modeling based on a bi-level programming model in order to select the optimal nodes of the… Click to show full abstract
The main purpose of the study was to apply symmetry principles to general mathematical modeling based on a bi-level programming model in order to select the optimal nodes of the underground metro-based logistics system (M-ULS). The first step was to select the metro stations as alternative logistics distribution nodes based on the existing metro network. Secondly, given the requirements of suppliers and demanders, a bi-level programming model was built based on symmetry principles to minimize the total cost of logistics distribution nodes, including construction cost, transport cost, and fixed cost. The third objective was to use an efficient heuristic algorithm to solve the model to obtain the optimal location of the nodes of the logistics distribution. Lastly, Nanjing’s Metro Line 2 was used as an example to validate the efficacy of the proposed model. The results of the case indicate that it is possible to deliver goods from logistics distribution nodes to demanders using the excess capacity of the metro, and the proposed bi-level programming model for M-ULS can be used to select suitable metro stations as distribution nodes and achieve the lowest cost on both the supply and demand sides of logistics while still ensuring the green and efficient transport of logistics services. References and suggestions for planning and selecting the location of logistics distribution nodes based on the metro network in the future can be found in this article.
               
Click one of the above tabs to view related content.