In this paper, we present some fixed point results for Subrahmanyan contraction in the setting of a b-metric space. We consider the case of multivalued operators. We also deduce the… Click to show full abstract
In this paper, we present some fixed point results for Subrahmanyan contraction in the setting of a b-metric space. We consider the case of multivalued operators. We also deduce the Ulam–Hyers stability property of the fixed point inclusion. The notion of b-metric generalizes the one of a metric, as in the third condition, the right-hand side is multiplied by a real number greater than 1. We remark that the second axiom, i.e., the one which shows the symmetry of the b-metric, remains unchanged. The findings presented in this paper extend some recent results which were proved in the context of a metric space. Some open questions are presented at the end of the paper.
               
Click one of the above tabs to view related content.