We examine the unboundedness, persistence, boundedness, uniqueness, and existence of non-negative equilibrium of an exponential symmetric difference equations system: Ωn+1=α1+β1Ωn+γ1Ωn−1e−(Ωn+ϖn), ϖn+1=α2+β2ϖn+γ2ϖn−1e−(Ωn+ϖn),n=0,1,⋯, whereby initial values Ω−1,ϖ−1,Ω0,ϖ0 and parameters α1,α2 are non-negative… Click to show full abstract
We examine the unboundedness, persistence, boundedness, uniqueness, and existence of non-negative equilibrium of an exponential symmetric difference equations system: Ωn+1=α1+β1Ωn+γ1Ωn−1e−(Ωn+ϖn), ϖn+1=α2+β2ϖn+γ2ϖn−1e−(Ωn+ϖn),n=0,1,⋯, whereby initial values Ω−1,ϖ−1,Ω0,ϖ0 and parameters α1,α2 are non-negative real numbers and β1,β2∈(0,1) and γ1,γ2≤0. We will discuss asymptotic global and local stability and the convergence rate of this system. Ultimately, to check our results, we set out some numerical explanations.
               
Click one of the above tabs to view related content.