LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Analytical and Numerical Boundedness of a Model with Memory Effects for the Spreading of Infectious Diseases

Photo from wikipedia

In this study, an integer-order rabies model is converted into the fractional-order epidemic model. To this end, the Caputo fractional-order derivatives are plugged in place of the classical derivatives. The… Click to show full abstract

In this study, an integer-order rabies model is converted into the fractional-order epidemic model. To this end, the Caputo fractional-order derivatives are plugged in place of the classical derivatives. The positivity and boundedness of the fractional-order mathematical model is investigated by applying Laplace transformation and its inversion. To study the qualitative behavior of the non-integer rabies model, two steady states and the basic reproductive number of the underlying model are worked out. The local and global stability is investigated at both the steady states of the fractional-order epidemic model. After analytic treatment, a structure-preserving numerical template is constructed to numerically solve the fractional-order epidemic model. Moreover, the positivity, boundedness and symmetry of the numerical scheme are examined. Lastly, numerical experiment and simulations are accomplished to substantiate the significant traits of the projected numerical design. Consequences of the study are highlighted in the closing section.

Keywords: order epidemic; epidemic model; model; fractional order; order; boundedness

Journal Title: Symmetry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.