LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nonlinear Radiative Nanofluidic Hydrothermal Unsteady Bidirectional Transport with Thermal/Mass Convection Aspects

Photo from wikipedia

The collective effect of thermal and mass convection along with the significance of thermal radiation, heat source/sink, and magneto-nanofluid are considered. A bi-directional stretching device is used to generate the… Click to show full abstract

The collective effect of thermal and mass convection along with the significance of thermal radiation, heat source/sink, and magneto-nanofluid are considered. A bi-directional stretching device is used to generate the symmetry of the flowing structure. Nonlinear behavior of thermal radiation is considered here. The magnetic field is considered non-uniform and vertically upward. Significances of pedesis motion and Ludwig–Soret are also revealed in an innovative way with heat source/sink effects. The concept of symmetry is used to transmute the transport equations from PDE type to nonlinear ODE type. We solved the transformed setup numerically by adopting Keller-box method criteria with the targeted accuracy rate. Graphical interpretations are explored with code verification. It is important to conclude that friction coefficients decline for incremental values of stretching parameter (0.1≤α≤0.9), magnetic field (0.3≤M≤0.9), and unsteady parameter (0.2≤Λ≤0.9) along with the bidirectional velocity components, and the rate of heat transmission rises with temperature ratio (1.3≤Γ≤1.7) and temperature Biot number (0.3≤BiT≤0.9) amplification. Moreso, the rate of mass transfer is enhanced with growing values of pedesis motion (0.2≤Nb≤0.6), unsteady parameter and concentration Biot number (0.3≤BiC≤0.9) with opposite effect when the Ludwig–Soret parameter (0.3≤Nt≤0.6) is boosted.

Keywords: nonlinear radiative; mass convection; transport; thermal mass; mass

Journal Title: Symmetry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.