LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Detecting Compressed Deepfake Images Using Two-Branch Convolutional Networks with Similarity and Classifier

As a popular technique for swapping faces with someone else’s in images or videos through deep neural networks, deepfake causes a serious threat to the security of multimedia content today.… Click to show full abstract

As a popular technique for swapping faces with someone else’s in images or videos through deep neural networks, deepfake causes a serious threat to the security of multimedia content today. However, because counterfeit images are usually compressed when propagating over the Internet, and because the compression factor used is unknown, most of the existing deepfake detection models have poor robustness for the detection of compressed images with unknown compression factors. To solve this problem, we notice that an image has a high similarity with its compressed image based on symmetry, and this similarity is not easily affected by the compression factor, so this similarity feature can be used as an important clue for compressed deepfake detection. A TCNSC (Two-branch Convolutional Networks with Similarity and Classifier) method that combines compression factor independence is proposed in this paper. The TCNSC method learns two feature representations from the deepfake image, i.e., similarity of the image and its compressed counterpart and authenticity of the deepfake image. A joint training strategy is then utilized for feature extraction, in which the similarity characteristics are obtained by similarity learning while obtaining authenticity characteristics, so the proposed TCNSC model is trained for robust feature learning. Experimental results on the FaceForensics++ (FF++) dataset show that the proposed method significantly outperforms all competing methods under three compression settings of high-quality (HQ), medium-quality (MQ), and low-quality (LQ). For the LQ, MQ, and HQ settings, TCNSC achieves 91.8%, 93.4%, and 95.3% in accuracy, and outperforms the state-of-art method (Xception-RAW) by 16.9%, 10.1%, and 4.1%, respectively.

Keywords: compressed deepfake; similarity; two branch; compression; branch convolutional; image

Journal Title: Symmetry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.