In this paper, we consider the existence and multiplicity of nontrivial solutions for discrete elliptic Dirichlet problems Δ12u(i−1,j)+Δ22u(i,j−1)=−f((i,j),u(i,j)),(i,j)∈Ω,u(i,0)=u(i,T2+1)=0i∈Z(1,T1),u(0,j)=u(T1+1,j)=0j∈Z(1,T2), which have a symmetric structure. When the nonlinearity f(·,u) is resonant at… Click to show full abstract
In this paper, we consider the existence and multiplicity of nontrivial solutions for discrete elliptic Dirichlet problems Δ12u(i−1,j)+Δ22u(i,j−1)=−f((i,j),u(i,j)),(i,j)∈Ω,u(i,0)=u(i,T2+1)=0i∈Z(1,T1),u(0,j)=u(T1+1,j)=0j∈Z(1,T2), which have a symmetric structure. When the nonlinearity f(·,u) is resonant at both zero and infinity, we construct a variational functional on a suitable function space and turn the problem of finding nontrivial solutions of discrete elliptic Dirichlet problems to seeking nontrivial critical points of the corresponding functional. We establish a series of results based on the existence of one, two or five nontrivial solutions under reasonable assumptions. Our results depend on the Morse theory and local linking.
               
Click one of the above tabs to view related content.