The process of computing correlation among attributes of an ordinary database is significant in the analysis and classification of a data set. Due to the uncertainties embedded in data classification,… Click to show full abstract
The process of computing correlation among attributes of an ordinary database is significant in the analysis and classification of a data set. Due to the uncertainties embedded in data classification, encapsulating correlation techniques using Pythagorean fuzzy information is appropriate to curb the uncertainties. Although correlation coefficient between Pythagorean fuzzy data (PFD) is an applicable information measure, its output is not reliable because of the intrinsic effect of other interfering PFD. Due to the fact that the correlation coefficients in a Pythagorean fuzzy environment could not remove the intrinsic effect of the interfering PFD, the notion of Pythagorean fuzzy partial correlation measure (PFPCM) is necessary to enhance the measure of precise correlation between PFD. Because of the flexibility of Pythagorean fuzzy sets (PFSs), we are motivated to initiate the study on Pythagorean fuzzy partial correlation coefficient (PFPCC) based on a modified Pythagorean fuzzy correlation measure (PFCM). Examples are given to authenticate the choice of the modified PFCM in the computational process of PFPCC. For application, we discuss a case of pattern recognition and classification using the proposed PFPCC after computing the simple correlation coefficient between the patterns based on the modified correlation technique. To be precise, the contributions of the work include the enhancement of an existing PFCC approach, development of PFPCC using the enhanced PFCC, and the application of the developed PFPCC in pattern recognition and classifications.
               
Click one of the above tabs to view related content.