The density of states of a quantum system can be calculated from its definition, but, in some cases, this approach is quite cumbersome. Alternatively, the density of states can be… Click to show full abstract
The density of states of a quantum system can be calculated from its definition, but, in some cases, this approach is quite cumbersome. Alternatively, the density of states can be deduced from the microcanonical entropy or from the canonical partition function. After discussing the relationship among these procedures, we suggest a simple numerical method, which is equivalent in the thermodynamic limit to perform a Legendre transformation, to obtain the density of states from the Helmholtz free energy. We apply this method to determine the many-body density of states of the unitary Fermi gas, a very dilute system of identical fermions interacting with a divergent scattering length. The unitary Fermi gas is highly symmetric due to the absence of any internal scale except for the average distance between two particles and, for this reason, its equation of state is called universal. In the last part of the paper, by using the same thermodynamical techniques, we review some properties of the density of states of a Schwarzschild black hole, which shares the problem of finding the density of states directly from its definition with the unitary Fermi gas.
               
Click one of the above tabs to view related content.