LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Genuine q-Stancu-Bernstein-Durrmeyer Operators

Photo from wikipedia

In the present paper, we introduce the genuine q-Stancu-Bernstein–Durrmeyer operators Znq,α(f;x). We calculate the moments of these operators, Znq,α(tj;x) for j=0,1,2, which follows a symmetric pattern. We also calculate the… Click to show full abstract

In the present paper, we introduce the genuine q-Stancu-Bernstein–Durrmeyer operators Znq,α(f;x). We calculate the moments of these operators, Znq,α(tj;x) for j=0,1,2, which follows a symmetric pattern. We also calculate the second order central moment Znq,α((t−x)2;x). We give a Korovkin-type theorem; we estimate the rate of convergence for continuous functions. Furthermore, we prove a local approximation theorem in terms of second modulus of continuity; we obtain a local direct estimate for the genuine q-Stancu-Bernstein–Durrmeyer operators in terms of Lipschitz-type maximal function of order β and we prove a direct global approximation theorem by using the Ditzian-Totik modulus of second order.

Keywords: stancu bernstein; durrmeyer operators; genuine stancu; bernstein durrmeyer

Journal Title: Symmetry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.