LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multiplicatively Simpson Type Inequalities via Fractional Integral

Photo from wikipedia

Multiplicative calculus, also called non-Newtonian calculus, represents an alternative approach to the usual calculus of Newton (1643–1727) and Leibniz (1646–1716). This type of calculus was first introduced by Grossman and… Click to show full abstract

Multiplicative calculus, also called non-Newtonian calculus, represents an alternative approach to the usual calculus of Newton (1643–1727) and Leibniz (1646–1716). This type of calculus was first introduced by Grossman and Katz and it provides a defined calculation, from the start, for positive real numbers only. In this investigation, we propose to study symmetrical fractional multiplicative inequalities of the Simpson type. For this, we first establish a new fractional identity for multiplicatively differentiable functions. Based on that identity, we derive new Simpson-type inequalities for multiplicatively convex functions via fractional integral operators. We finish the study by providing some applications to analytic inequalities.

Keywords: fractional integral; calculus; simpson type; type inequalities; type; via fractional

Journal Title: Symmetry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.