In practical applications, the basic fuzzy set is used via symmetric uncertainty variables. In the research field, it is comparatively rare to discuss two-fold uncertainty due to its complication. To… Click to show full abstract
In practical applications, the basic fuzzy set is used via symmetric uncertainty variables. In the research field, it is comparatively rare to discuss two-fold uncertainty due to its complication. To deal with the multi-polar uncertainty in real life problems, m-polar (multi-polar) fuzzy (m-PF) sets are put forward. The main objective of this paper is to explore the idea of m-PF sets, which is a generalization of bipolar fuzzy (BPF) sets, in ternary semirings. The major aspects and novel distinctions of this work are that it builds any multi-person, multi-period, multi-criteria, and complex hierarchical problems. The main focus of this study is to confine generalization of some important results of BPF sets to the results of m-PF sets. In this research, the notions of m-polar fuzzy ternary subsemiring (m-PFSS), m-polar fuzzy ideal (m-PFI), m-polar fuzzy generalized bi-ideal (m-PFGBI), m-polar fuzzy bi-ideal (m-PFBI), and m-polar fuzzy quasi-ideal (m-PFQI) in ternary semirings are introduced. Moreover, this paper deals with several important properties of m-PFIs and characterizes regular and intra-regular ternary semiring in terms of these ideals.
               
Click one of the above tabs to view related content.