LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrochemistry of Rhodanine Derivatives as Model for New Colorimetric and Electrochemical Azulene Sensors for the Detection of Heavy Metal Ions

Photo by viazavier from unsplash

Rhodanine (R) is a heterocycle having complexing properties for heavy metal (HM) ions. Considering the similar electron-donating character of diethylaminobenzene and azulene, electrochemical characterization of (Z)-5-(azulen-1-ylmethylene)-2-thioxo-thiazolidin-4-one (R1) and 5-(4 diethylamino-benzylidene)-2-thioxo-thiazolidin-4-one… Click to show full abstract

Rhodanine (R) is a heterocycle having complexing properties for heavy metal (HM) ions. Considering the similar electron-donating character of diethylaminobenzene and azulene, electrochemical characterization of (Z)-5-(azulen-1-ylmethylene)-2-thioxo-thiazolidin-4-one (R1) and 5-(4 diethylamino-benzylidene)-2-thioxo-thiazolidin-4-one (R2) was performed to establish their common features. Chemically modified electrodes based on R1 and R2 were compared for HM recognition. Evidence for the formation of films was provided by scanning and controlled potential electrolysis, and HM recognition experiments were performed using their films. Parallel studies for analysis of HMs by complexation in solution were performed by UV-Vis. The analogy between R1 and R2 created the premise for easier selection of compounds for certain applications. The performance of the chemically modified electrodes was evaluated as detection limits for HMs. The azulene monomer (R1) proved to be the best candidate for Pb(II) detection, being about eight times more sensitive than R2. However, in solution, R2 proved to be a good choice for optical measurements, having a higher absorption coefficient. These results support the two ligands having different behaviors in homogeneous and heterogeneous systems.

Keywords: metal ions; heavy metal; electrochemistry; rhodanine derivatives; electrochemistry rhodanine

Journal Title: Symmetry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.