LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigating the Impact of Fractional Non-Linearity in the Klein-Fock-Gordon Equation on Quantum Dynamics

Photo by v_nut_v from unsplash

In this paper, we investigate the fractional-order Klein–Fock–Gordon equations on quantum dynamics using a new iterative method and residual power series method based on the Caputo operator. The fractional-order Klein–Fock–Gordon… Click to show full abstract

In this paper, we investigate the fractional-order Klein–Fock–Gordon equations on quantum dynamics using a new iterative method and residual power series method based on the Caputo operator. The fractional-order Klein–Fock–Gordon equation is a generalization of the traditional Klein–Fock–Gordon equation that allows for non-integer orders of differentiation. This equation has been used in the study of quantum dynamics to model the behavior of particles with fractional spin. The Laplace transform is employed to transform the equations into a simpler form, and the resulting equations are then solved using the proposed methods. The accuracy and efficiency of the method are demonstrated through numerical simulations, which show that the method is superior to existing numerical methods in terms of accuracy and computational time. The proposed method is applicable to a wide range of fractional-order differential equations, and it is expected to find applications in various areas of science and engineering.

Keywords: fock gordon; klein fock; equation

Journal Title: Symmetry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.